| |
1.
|
 
|
  |
Schillinger, D., Gangwar, T., Gilmanov, A., Heuschele, D. J. and Stolarski, H. K.
(2018)>.
Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures.
Computer Methods in Applied Mechanics and Engineering. DOI:
10.1016/j.cma.2018.02.029
|
|
2.
|
 
|
  |
Gangwar, T., Calder, J., Takahashi, T., Bechtold, J. E. and Schillinger, D.
(2018)>.
Robust variational segmentation of 3D bone CT data with thin cartilage interfaces.
Medical Image Analysis. DOI:
10.1016/j.media.2018.04.003
|
|
3.
|
 
|
  |
Gangwar, T. and Schillinger, D.
(2019)>.
Microimaging-informed continuum micromechanics accurately predicts macroscopic stiffness and strength properties of hierarchical plant culm materials.
Mechanics of Materials. DOI:
10.1016/j.mechmat.2019.01.009
|
|
4.
|
 
|
  |
Gangwar, T., Heuschele, D. J., Smith, K. P., Fok, A., Annor, G. and Schillinger, D.
(2020)>.
Multiscale characterization and micromechanical modeling of crop stem materials.
Biomechanics and Modeling in Mechanobiology. DOI:
10.1007/s10237-020-01369-6
|
|
5.
|
 
|
  |
Gangwar, T. and Schillinger, D.
(2021)>.
Concurrent material and structure optimization of multiphase hierarchical systems within a continuum micromechanics framework.
Structural and Multidisciplinary Optimization. DOI:
10.1007/s00158-021-02907-1
|
|
6.
|
 
|
  |
Gangwar, T., Susko, A. Q., Baranova, S., Guala, M., Smith, K. P. and Heuschele, D. J.
(2023)>.
Multi-scale modelling predicts plant stem bending behaviour in response to wind to inform lodging resistance.
Royal Society Open Science. DOI:
10.1098/rsos.221410
|
|
7.
|
 
|
  |
Gangwar, T. and Schillinger, D.
(2023)>.
Thermodynamically consistent concurrent material and structure optimization of elastoplastic multiphase hierarchical systems.
Structural and Multidisciplinary Optimization. DOI:
10.1007/s00158-023-03648-z
|
|
8.
|
 
|
  |
Ebrahem, A., Jessen, E., Eikelder, M. F. P., Gangwar, T. Mika, M. and Schillinger, D.
(2023)>.
Connecting continuum poroelasticity with discrete synthetic vascular trees for modelling liver tissue.
Proceedings of the Royal Society A. DOI:
10.48550/arXiv.2306.07412
|
|