| |
1.
|
 
|
  |
Roy Chowdhury, S., Roy, D., and Vasu, R. M.
(2013)>.
Variance-reduced particle filters for structural system identification problems.
Journal of Engineering Mechanics. DOI:
10.1061/(ASCE)EM.1943-7889.0000480
|
|
2.
|
 
|
  |
Sarkar, S., Roy Chowdhury, S., Venugopal, M., Vasu, R. M., and Roy, D.
(2014)>.
A Kushner–Stratonovich Monte Carlo filter applied to nonlinear dynamical system identification.
Physica D: Nonlinear Phenomena. DOI:
10.1016/j.physd.2013.12.007
|
|
3.
|
 
|
  |
Sarkar, S., Roy Chowdhury, S., Roy, D. and Vasu, R. M.
(2015)>.
Internal noise-driven generalized Langevin equation from a nonlocal continuum model.
Physical Review E. DOI:
10.1103/PhysRevE.92.022150
|
|
4.
|
 
|
  |
Roy Chowdhury, S., Rahaman, M. M., Roy, D. and Sundaram, N.
(2015)>.
A micropolar peridynamic theory in linear elasticity.
International Journal of Solids and Structures. DOI:
10.1016/j.ijsolstr.2015.01.018
|
|
5.
|
 
|
  |
Chowdhury, S. Roy, Roy, P., Roy, D. and Reddy, J. N.
(2016)>.
A peridynamic theory for linear elastic shells.
International Journal of Solids and Structures. DOI:
10.1016/j.ijsolstr.2016.01.019
|
|
6.
|
 
|
  |
Roy Chowdhury, S., Roy, D., Reddy, J. N., & Srinivasa, A.
(2016)>.
Fluctuation relation based continuum model for thermoviscoplasticity in metals.
Journal of the Mechanics and Physics of Solids. DOI:
10.1016/j.jmps.2016.07.022
|
|
7.
|
 
|
  |
Roy Chowdhury, S., Roy, D. and Reddy, J. N.
(2017)>.
Relating entropy flux with heat flux in two-temperature thermodynamic model for metal thermoviscoplasticity.
Journal of Applied Mechanics. DOI:
10.1115/1.4034971
|
|
8.
|
 
|
  |
Roy Chowdhury, S., Kar, G., Roy, D. and Reddy, J. N.
(2017)>.
Two-temperature thermodynamics for metal viscoplasticity: continuum modeling and numerical experiments.
Journal of Applied Mechanics. DOI:
10.1115/1.4034726
|
|
9.
|
 
|
  |
Roy Chowdhury, S., Kar, G., Roy, D. and Reddy, J. N.
(2018)>.
Metal viscoplasticity with two-temperature thermodynamics and two dislocation densities.
Continuum Mechanics and Thermodynamics. DOI:
10.1007/s00161-017-0606-6
|
|
10.
|
 
|
  |
Das, S., Roy Chowdhury, S. and Roy, D. (2018)
(2018)>.
A constitutive model for thermoplastics based on two temperatures.
European Journal of Mechanics-A/Solids. DOI:
10.1016/j.euromechsol.2018.06.010
|
|
11.
|
 
|
  |
Roy Chowdhury, S., and Reddy, J. N.
(2019)>.
Geometrically exact micropolar Timoshenko beam and its application in modelling sandwich beams made of architected lattice core.
Composite Structures. DOI:
10.1016/j.compstruct.2019.111228
|
|
12.
|
 
|
  |
Roy Chowdhury, S., Roy, P., Roy, D. and Reddy, J. N.
(2019)>.
A modified peridynamics correspondence principle: Removal of zero-energy deformation and other implications.
Computer Methods in Applied Mechanics and Engineering. DOI:
10.1016/j.cma.2018.11.025
|
|
13.
|
 
|
  |
Roy Chowdhury, S. and Roy, D.
(2019)>.
A non-equilibrium thermodynamic model for viscoplasticity and damage: Two temperatures and a generalized fluctuation relation.
International Journal of Plasticity. DOI:
10.1016/j.ijplas.2018.09.014
|
|
14.
|
 
|
  |
Kar, G., Roy Chowdhury, S. and Roy, D.
(2020)>.
A non-equilibrium thermodynamic model for viscoplasticity coupled with damage for BCC metals.
Mechanics of Advanced Materials and Structures.. DOI:
10.1080/15376494.2020.1717692
|
|
15.
|
 
|
  |
Bijaya, A., and Chowdhury, S. R.
(2020)>.
On failure mode transition: A phase field assisted non-equilibrium thermodynamics model for ductile and brittle fracture at finite strain.
Meccanica. DOI:
10.1007/s11012-020-01175-5
|
|
16.
|
 
|
  |
Bijaya, A., Chowdhury, S. R. and Chowdhury, R.
(2023)>.
Multiscale phase-field approach for investigation of anisotropic fracture properties of architected materials.
Mechanics of Materials. DOI:
10.1016/j.mechmat.2022.104528
|
|
17.
|
 
|
  |
Bijaya, A., Chowdhury, S. R. and Chowdhury, R.
(2023)>.
Reduced-dimensional phase-field theory for lattice fracture and its application in fracture toughness assessment of architected materials.
European Journal of Mechanics-A/Solids. DOI:
10.1016/j.euromechsol.2023.104964
|
|
18.
|
|